

All you (ever)

needed to know
about Java

0419 904 458
www.sagecomputing.com.au

SSAAGGEE CCoommppuuttiinngg SSeerrvviicceess

All you (ever) needed to know about Java Workshop

Edition 1.0 November 2006

© Copyright SAGE Computing Services November 2006

SAGE Computing Services believes the information in this document is accurate as
of its publication date. The information is subject to change without notice.

SAGE Computing Services assumes no responsibility for any errors that may appear
in this document.

Apache, Ant, MyFaces, Struts and Tomcat are registered trademarks of the Apache
Software Foundation.

Apple Quicktime is a registered trademark of Apple Computer Inc.

JDeveloper, JPublisher, Oracle, Oracle 9, Oracle 10g, Oracle Application Server and
Toplink are registered trademarks of Oracle Corporation.

Microsoft, Microsoft Excel, Microsoft Internet Explorer, Microsoft Windows, Microsoft
Word, ODBC, SQLServer and Windows Media Player are registered trademarks of
Microsoft Corporation.

Enterprise Java Beans, J2EE, J2ME, J2SE, Java, JavaBeans, Javadoc, JavaServer
Faces, JavaServer Pages, JDBC, JSP, JSF, JSR, JVM, Sun and Sun Java are
registered trademarks of Sun Microsystems.

CVS is a registered trademark of the Free Software Foundation.

JBoss is a registered trademark of JBoss Inc.

MySQL is a registered trademark of MySQL AB.

Winzip is a registered trademark of Winzip International LLC.

Clearcase is a registered trademark of IBM Corporation.

Perforce is a registered trademark of Perforce Software Inc.

Real Player is a registered trademark of RealNetworks Inc.

Google.com is a registered trademark of Google.

All trade names referenced are the service mark, trademark, or registered trademark
of the respective manufacturer.

 SAGE Computing Services

A Company Profile

Telephone: 0419 904 458
Facsimile: 08 9243 4335

www.sagecomputing.com.au

Services

Services provided by the company include:

• Customised Training Programs
• Post-training Mentoring
• Database Administration Services
• Complete Systems Development and Support
• Consultancy Advice
• Quality Assurance
• Tuning Reviews
• Business Analysis
• Telephone Advice and Assistance
• Database Health Checks

SAGE Computing Services Pty. Ltd. aims to provide the best Oracle
technology experts to assist our clients in building, implementing and
managing business solutions using Oracle software. Sage offers custom
training workshops in Oracle products and a complete analysis, design,
development and database administration consulting service.

SAGE is a small company which has succeeded by adopting a partnership
approach with our clients. We have a long term relationship with many of our
clients which is dependent on our providing services which achieve successful
outcomes.

enquiries@sagecomputing.com.au

C o u r s e D e s c r i p t i o n s
(not a full list of available courses, please see www.sagecomputing.com.au for a full course
catalogue)

All courses can be customised to suit client requirements

enquiries@sagecomputing.com.au

Oracle JDeveloper 10.1.3 5 days
This course is designed to provide students with the skills and knowledge required to develop
a web application using ADF Business Components and ADF Faces (JavaServer Faces) web
pages within Oracle JDeveloper 10.1.3.

 JDeveloper Introduction ADF Entity Objects ADF Input, Output and
Command Components

 JDeveloper IDE ADF Associations ADF Forms, Tables, Trees
 Database Connections ADF Domains JSF Configuration, Navigation,

Managed Beans and Event
Handling

 Online Database Browser ADF Application Modules Expression Language
 Stored Procedure Editor ADF View Objects ADF Page Layout and Menus
 Workspaces and Projects ADF View Links ADF Faces Skins
 Offline Database Modelling

Tools
 ADF Business Component

Java Classes
 Deploying an ADF Application

 Java Language ADF Binding Layer and the
ADF Model Layer Classes

 Web Security

 Application Development
Framework

 ADF Faces ADF Selection, Validator,
Converter and Visual
Components

 ADF Business Components
Diagrammer

 ADF Form Code Management and
Source Control

 ADF Business Components ADF Read-Only Table Advanced JDeveloper

Oracle 10G - New Features for Developers Workshop 1 day
Aimed at developers, this course is designed to provide the student with an
understanding of the new features of Oracle 10G.

 SQL*Plus Enhancements New SQL Features PL/SQL Packages
 Flashback Data Pump Performance Enhancements
 Enhanced SQL commands PL/SQL Enhancements

Application Express Workshop (previously HTMLDB) 3 days
The course is designed to provide the student with the skills and knowledge required to
develop a complete application using Oracle’s Application Express product. The student will
develop web interfaces (including forms, reports and charts; addition of validation and
customised formatting) to create a small application.

 Product Overview Regions and Items Utilities and Reporting
 SQL Workshop Page Processing Advanced Development

Techniques
 Utilities Shared Components Administration and Deploying

an Application
 Application Builder Themes and Templates
 Creating Pages Other Page and Region

Types

Oracle SQL and SQL*Plus Workshop - Oracle 10G Rel2 4 days
This course is designed to provide the student with a basis for developing systems using the
Oracle database. The SQL language is covered from simple to complex constructs.
Guidelines are provided on writing SQL for optimum performance and ease of maintenance.

 The Relational Model Functions Constraints
 The SQL Language Joins Views and Sequences
 SQL*Plus and iSQL*Plus Group and Analytical

Functions
 Indexes

 Oracle SQL Developer Set Operators Clusters
 More about SELECT Subqueries Security
 Substitution Variables Data Manipulation Language Locking and

Read Consistency
 Using SQL*Plus for Formatting
Output

 Database Objects More Advanced SQL

PL/SQL Workshop 3 days
This course is for developers who will be designing or building applications using the Oracle
server. It is relevant for developers who are using the Oracle Developer toolset, and for
those using alternative front-end products accessing the Oracle database. The course covers
basic PL/SQL syntax and the use of server level procedures, functions and triggers.

 PL/SQL Overview Nested Blocks and Cursors Packages
 Basic PL/SQL Syntax Tables, Arrays and Records More About Packages
 SQL Statements in PL/SQL Architecture Overview Supplied Packages
 Procedural Statements -
Assignment and Conditional
Processing

 Procedures / Functions Triggers

 Procedural Statements -
LOOPS

 Execution and Error
Handling

 More About Triggers

 Exceptions Security and Dependency Large Objects

Oracle Forms Developer Workshop 5 days
This course is designed for developers who will be designing or building applications using
Oracle Form Builder. This is a practical course in which the student builds an application
during a series of workshop sessions.

 Running a Form Other Item Types More Trigger Events
 Forms Modules and Storage Visual Attributes Determining Form Properties
 Working in the Builder Mouse Events Timers
 Creating a Form Relations Integrating Multiple Forms

Modules in an Application
 Form and Data Block Properties Alerts and Editors Forms Architecture and Java
 Form Layout Lists of Values Integrating Forms with

Reports
 Items Record Groups PL/SQL Library Modules
 Introduction to Triggers Windows and Canvases Managing Application

Development
 Program Units Transaction Processing and

Triggers
 Menu Modules

 Check Boxes, Radio Groups
and List Items

 Advanced Data Block
Properties

Oracle Reports Workshop - 10G 4 days
This course is designed for developers who will be designing or building applications using
Oracle Reports. This is a practical course in which the student builds a series of reports
ranging from simple to complex.

 Product Overview Columns Displaying Files, Images and
Charts

 The User Interface Multiple Queries and Links Matrices
 The Designer Interface The Paper Layout - Basic

Objects
 Parameters

 Storage Standard Layouts PL/SQL in Reports
 Building a Paper Report General Paper Layout

Properties
 Report Templates

 The Data Model Editor Advanced Paper Layout
Properties

 Publishing Reports on the
Web

 Other Query Types Web Reports

Oracle 10G – Database Administration Workshop 5 days
This course is designed for Database Administrators. It covers the architecture of the Oracle
10g server, and the procedures required to effectively administrate the database. The course
provides a series of practical workshops in which the students can practice the database
administration techniques they have learnt.

 Oracle 10g Overview Managing Tablespaces Database Tuning
 Oracle 10g Architecture Managing Redo Log Groups

and Members
 The Multi Threaded Server

 Database Creation Database Storage Backup and Recovery
 Startup and Shutdown and
Oracle Database

 Managing Undo Data Pump

 Oracle Enterprise Manager Security
 Database Structure Optimisation

Application Tuning Workshop 10g 3 days
This course is designed for Designers, Developers, and Database Administrators, and
examines all aspects of tuning SQL statements and applications.

 Defining a Tuning Methodology Stored Outlines Tuning Tips
 Diagnostic Tools Storage Parameters Partitions
 Processing an SQL Statement Hash Clusters and Index

Clusters
 Optimise using Parallelisation

 Indexes Optimising PL/SQL Tuning Tools
 Cost Based Optimisation Optimising Applications

through Stored Procedures
and Packages

 Gathering Statistics Data Design for
Performance

Oracle Discoverer Workshop 2 days
This course is designed for End Users and examines all aspects of using the latest versions
of Oracle Discoverer. Both the web and client server interfaces are covered.

 Oracle Discoverer Overview Performing Analysis Scheduling and

Administration
 Discoverer Workbooks Customising Workbooks and

Worksheets

 Worksheets and Conditions Printing and Exporting
Query Results

Oracle Portal Workshop 3 days
This course is designed to provide the student with the knowledge and skills required to build
corporate portals. The course covers the use of Oracle Portal for content management and
includes recommendations and guidelines on the classification and searching of content. The
standardisation and customisation of the Portal interface and styles are described. The
workshop includes the use of Portal to create simple application components such as forms,
reports and graphs. Finally the security management of a corporate portal is considered.

 Product Overview Custom Types, Parameters
and Events

 Other Components

 Page Groups and Pages Application Components -
Forms

 Security

 Styles, Navigation Bars and
Templates

 Application Components -
Reports

 Item Regions and Classification Shared Component

Advanced Oracle Portal Workshop 1 day
The course is designed to provide the student with the knowledge and skills required to build
custom portlets. The course describes the provider and portlet structure and the integration
and management of custom portlets within the product. The attendee builds a simple
provider and its custom portlets based on an example. The course focuses on PL/SQL
portlets to demonstrate the techniques required, but also covers web portlets. Detailed
coverage of the Portal API and its use, not only in custom portlets, but to enhance other
Portal components is included.

 Programmable Portlets -
Concepts

 PL/SQL Portlets API Services – Other Utilities

 PL/SQL Providers API Services – Session
Storage

 Web Providers

Oracle End User Workshop 2 days
This course is designed for End Users who require a knowledge of SQL to query the Oracle
database. It commences with a description of relational concepts and continues with
coverage of the SQL statements required to access information from one or more Oracle
Tables. Some basic formatting is also covered.

 The Relational Model More About SELECT Joins
 Structured Query Language Substitution Variables Group Functions
 SQL*Plus Using SQL*Plus for

Formatting Output

 Oracle SQL Developer Functions

All our training is conducted at the client site and using the client’s Oracle licences. Sage
Computing Services provides all course materials which the attendees retain after the course
as a reference.

All Sage trainers are consultants who are using the products in real world situations and can
bring a wealth of experience to the classroom.

JAVA LANGUAGE... 10

Introduction..11

Objective ...12

History...12

Object-Oriented Concepts ..13

Implementing Java ..15
Source Code, Bytecode and the JVM..15

JRE and JDK...15
J2SE, J2EE and J2ME...15

Class ...16
Naming Conventions ..18

Default Names..18
Reserved Words ...19

Data Types ..20
Primitive Data Types ...20
Strings...21
Dates ...22
Arrays ...23
Collections..23
Boxing Primitives...24

main() method ...25
Operators ...26
Conditional Processing ...27

If statement (and if else)...27
Switch...27
while loop...28
do loop..28
for loop ...28
Exceptions ..29

Classes...30
Object Instantiation and By-Reference Variables ...30
Extends ...30
Abstract and Concrete Classes...31
Interfaces ..31
Nested Classes..31
Anonymous Classes ...32

Java Programming Tips ..33
Comparing object with == and equals() ..33
null ..34

Other Java Language Concepts ...35
Design Patterns ...35
Object Classification...35
JavaBeans..35
Garbage Collection ...36

The Java Language

SAGE Computing Services All you (ever) needed to know about Java

Page: 11

Introduction

In this workshop we will be looking at the following:

Java Language
History
Object-Oriented Concepts
Implementing Java
Conditional Processing
Classes
Java Programming Tips
Other Java Language Concepts

SAGE Computing Services All you (ever) needed to know about Java

Page: 12

Objective

To implement Java in the Oracle database, or to understand tools like JDeveloper
and its frameworks, it is useful to have an understanding of the Java Language.

History

At its inception at Sun, Java was known as the Stealth Project, then the Green
Project followed by Oak.

Finally it was released as Java in 1996 as v1.0. The following gives the version
numbers and respective codenames:

Version Year Revision

1.0 1996 Initial revision.
1.1 1997 Updated
1.2 1998 Codename Playground. Re-branded as Java 2.
1.3 2000 Codename Kestrel.
1.4 2002 Codename Merlin.
5.0 2004 Codename Tiger.
6.0 2006 Codename Mustang.
7.0 tba Codename Dolphin.

While these versions have added and extended the language, the Java libraries
written to extend the functionality of the language have grown from a few hundred to
around 3000 in v5.0.

In designing Java the Sun designers had 5 main goals:

• Use the Object-Oriented paradigm.
• Borrow parts from the older OO language C++ (and C).
• Platform independence.
• Execute remote sources securely.
• Built-in support for computer networks.

SAGE Computing Services All you (ever) needed to know about Java

Page: 13

Object-Oriented Concepts

To understand the Java language, an understanding of the Object-Oriented (OO)
paradigm is useful. Java is considered an Object-Oriented Programming (OOP)
Language (OOPL), based around the key concepts of the object, encapsulation,
inheritance and polymorphism among others:

• Object - an Object-Oriented program is one that is made up of a number of
interacting objects.

An object itself is a conceptual entity, such as a person, account or queue.
The main defining aspects of an object are its:

o Name – identifies an object from all other objects.

o Attributes – synonymously referred to as data members, variables

and fields, these hold the data representing the object. These in turn
hold the state of the object.

o Methods – that access and operate on the data members in a

predefined manner, essentially defining an object’s behaviour, and its
interface to other objects.

• Class - an object is a single instance of a class. A class is the template

mechanism for object instances defining the attributes and methods at
runtime.

The act of creating an object instance of a class is called the instantiation of
that class.

• Messages - objects talk to each other through messages. In a technical

sense this is implemented by one object’s method invoking another object’s
exposed method. The objects are referred to as the caller and receiver
respectively, or alternatively both may be referred to as agents.

In constructing the message a number of arguments may be optionally
passed.

In response to a message the receiver will carry out a number of actions as
defined by the invoked method.

• Associations – a class may have an association with another class. The

association describes a relationship between the two classes. For example a
person object may “subscribe-to” a magazine object, or a queue object may
“contain” booking objects.

The association also describes the multiplicity or cardinality of the
relationship. For example the queue may contain 0, 1 or many bookings
objects. Such multiplicity is typically described in terms of : 0..1, 1..1, 1..* or
0..* where * implies multiple.

SAGE Computing Services All you (ever) needed to know about Java

Page: 14

• Abstraction – the ability for a program to ignore the implementation details of

an object it is manipulating, giving it the ability to focus on the essential. In an
OO system this is implemented through the concepts of encapsulation,
inheritance and polymorphism.

• Encapsulation – a key concept behind Object-Oriented programming is the

concept of encapsulation. Attributes and methods of an object are made
either private to the class such that only its attributes and methods may see
the private constructs, or alternatively public such that not only the class can
see these constructs, but outside objects as well. Such publicly exposed
attributes and methods become the interface of which outside objects may
access and manipulate the object.

The key reason for encapsulation is to control the access to the internal
attributes and methods, essentially sealing the class’s data safely inside the
class. As such the internal data may only be accessed and modified through
the class’s own trusted public methods.

• Inheritance - classes can be organised into a hierarchical inheritance

structure, where a child class inherits attributes from a parent class. Also
known synonymously as an inheritance tree.

A child class is synonymous with the term subclass or derived class. The
parent class is synonymous with the terms superclass or base class.

The inheritance tree may run many levels deep. For example a person is
derived from mammal class, also derived from an animal superclass.

In a pure Object-Oriented system, a class may support multiple inheritance.
For example a person may inherit from both the student and employee
superclasses.

• Polymorphism - one object calls another through a message, specifying a

called method. If that method is found within the receiver class, the method is
invoked. If the method is not found the receiver class’s parent class
equivalent method is invoked, and so on. This behaviour is called
polymorphism - derived from the Greek terms meaning many-forms.

Polymorphism extends not only to the methods but also the attributes of an
object.

Note however Java is not considered a pure Object-Oriented programming language
because of the following limitations:

• Support for primitive datatypes
• Single inheritance
• No support for operator overloading

SAGE Computing Services All you (ever) needed to know about Java

Page: 15

Implementing Java

The basics of implementing a Java program are as follows:

Source Code, Bytecode and the JVM

Java source code is stored in a human readable text file with a *.java extension.
In order to provide platform independence, the Java compiler converts syntactically
correct source code into bytecode. Bytecode is stored in a file with a *.class
extension. Each bytecode file has a 1-to-1 relationship with the relating *.java file.

The bytecode is platform independent and can be transferred between platforms.
The bytecode is run on a platform specific Java Virtual Machine (JVM) that interprets
the bytecode and runs the equivalent platform specific command.

The ultimate goal of this approach is “Write Once, Run Anywhere”.

JRE and JDK

The Java Runtime Environment (JRE) is the software required to run a Java
program. You can obtain JRE releases from the Sun website.

The core components of the JRE are:

• Precompiled bytecode Java libraries for your programs to execute. This
includes core libraries such as lists, security and internationalisation,
integration libraries such as JDBC and JNDI, and user interface libraries such
as Swing and AWT.

• A platform independent Java Virtual Machine (JVM) to run compiled

bytecode.

The Java Development Kit (JDK), sometimes known as the Software Development
Kit (SDK), is a superset of the Java Runtime Environment (JRE). It includes
additional tools for development including a Java compiler, documentation and a
debugger. JDeveloper includes a version of the JDK in order to run your programs.

J2SE, J2EE and J2ME

The Java Development Kit (JDK) comes in three flavours, namely:

• J2SE - specifically Java 2 Standard Edition (or Java SE) is essentially a set of
Java APIs useful to any Java program. J2SE is contained both within J2EE
and J2ME. This includes libraries for maths, IO, text, as well as graphical
toolkit libraries such as Swing.

• J2EE - specifically Java 2 Enterprise Edition (or Java EE) is designed to run

distributed multi-tier applications. J2EE includes a number of Java APIs to
support enterprise development including EJBs, JSPs, and web service
technologies.

• J2ME - specifically Java 2 Micro Edition is a set of Java APIs aimed at the

embedded processor market included within PDAs and mobile phones for
example.

SAGE Computing Services All you (ever) needed to know about Java

Page: 16

Class

An example of Java class is as follows:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

package au.com.sagecomputing.cars;

import java.lang.*;

/*
 This class defines a Bmw
*/
public class Bmw extends Cars {
 int passengers; // override the Cars passengers
 int kmsPerLitre; // unique to Bmw

 public Bmw() {
 passengers = 4;
 maxKph = 250; // maxKph is inherited from Cars
 kmsPerLitre = 9;
 }

 // super.getMaxKph is the same as getMaxKph() here
 public int getHourlyFuelUsage() {
 return super.getMaxKph() / kmsPerLitre;
 }

 public int getPassengers() {
 return passengers;
 }

 public void setPassengers(int newPassengers) {
 passengers = newPassengers;
 }
}

This class definition identifies a number of concepts:

• Packages - each Java class resides within a package. A package typically
contains related classes. The package name is defined with a dot notation.

• Import – a Java class may import zero, one or many classes to make use of

the code supplied within. As the other class is stored in a package, it is
referenced with dot notation. If more than one class is required a wildcard
may be used.

• Comments – comments may be limited to one line and preceded with two

forward slashes // or stretched over multiple lines enclosed in slash-star
notation such as /* comment */.

• Class Declaration – a class typically has a name. It can extend or inherit

from a parent class. Defining the class as public exposes the class to classes
outside of its package.

• Variables – or instance variables are the internal attributes of the class.

Typically an attribute has a datatype and name. Implicitly, if not defined the
datatype is considered private to the class. In other words only attributes and
methods within this class can see and modify the variable.

SAGE Computing Services All you (ever) needed to know about Java

Page: 17

• Constructors – a class may have zero, one or many constructors. A
constructor is a type of class method that is intended to be called when an
instance of the class is instantiated. Constructors typically initialise the object
ready for first use. Unlike other methods they do not return a value.

Constructors, like other constructs in the class may be defined as public or
private or protected. A protected construct is one that is accessible to the
current object and any other classes in the same package, but not to classes
external to the package.

In your code, to instantiate an object instance using a constructor you may
use code like the following:

01 Bwm myBwm = new Bmw();

• Methods –in addition to the constructor, the class may also include a number

of methods. Methods define a return datatype or void if they do not return a
value. It is expected that a method that returns a datatype includes a return
statement.

Methods may accept parameters and arguments. In the same manner as
other class constructs the method may expose itself through the public,
private or protected keywords.

• Scope – attributes and arguments have scope, defining where they can be
used within a class. An attribute defined in the class is accessible to the rest
of the class. However a variable or argument defined within a method is only
accessible to that method.

• Class (or Static) Attribute – is one that only exists once for all object

instances. It's defined with the static keyword. It is useful for aggregates,
for example:

01 private static int numberPatients = 0;

• Class (or Static) Method – similar to a class attribute, is a method that exists

for the class, not each individual object instance. The keyword static is
also used. A static method may be accessed in two ways. Say we have an
additional static method in our Bmw class:

01
02
03
04
05
06
07
08

public static void writeMessage() {
 System.out.println(“Hello JDeveloper!”);
}

Cars.writeMessage();
// or
Cars cars = new Cars();
cars.writeMessage();

• Constants – an attribute whose value cannot be changed may be defined as

a constant, using the final keyword. As constants are good candidates to
be only declared once for the entire class, they often use the static keyword:

01 private static final int maxPatients = 0;

SAGE Computing Services All you (ever) needed to know about Java

Page: 18

• Code Blocks – code is enclosed in curly brackets { }. For example the
components of a class are enclosed in brackets, so too is the code for a
constructor or a method.

• Semicolons – individual operations, such as importing a package, defining a

class attribute or assigning a value to another variable, are terminated with a
semicolon. Operations may be split over several lines completed with a
semicolon. Typically declarations and associated code blocks, such as a
method or class definition do not end in a semicolon.

• Case Sensitive – Java is a case sensitive language. If you define a variable

as maxBookings, you cannot refer to it as MaxBookings or
MAXBOOKINGS. Only maxBookings is valid. This is true for all Java
constructs, including reserved words. Reserved words are always in
lowercase.

Naming Conventions

Java does not enforce specific naming conventions. However an industry standard
and guidelines by Sun have been developed in helping Java developers write
standard code.

Default Names

Given the case sensitive nature of the Java language, there is a default naming
convention for language’s constructs:

• Names are alphabetic.

• Underscores and punctuation are not used.

• Packages – use a dot naming convention, usually containing as the first part
the reverse URL of the organisation, followed by component package
descriptions. For example for a queue mechanism written by Sage
Computing Services, we might use au.com.sagecomputing.
collections.queue.

• Class – starts with a capital letter, and each subsequent word starts with a

capital letter. eg. EmployeeQueue or ConnectionPoolFactory

• Class Attributes – start with a lowercase letter, and each subsequent words
starts with a capital, for example maxWages or currentStateValid.

• Class Methods – similar to class attributes, start with a lowercase letter, and

each subsequent words starts with a capital, for example:
isObjectValid() or getMaxWages().

SAGE Computing Services All you (ever) needed to know about Java

Page: 19

Reserved Words

The Java Language Specification defines a number of keywords:

http://java.sun.com/docs/books/jls/third_edition/html/lexical.html

abstract default goto package this
assert do if private throw
boolean double implements protected throws
break else import public transient
byte enum instanceof return true
case extends int short try
catch false interface static void
char final long strictfp volatile
class finally native super while
const float new switch
continue for null synchronized

These keywords are reserved and may not be used for identifier names in your Java
programs.

SAGE Computing Services All you (ever) needed to know about Java

Page: 20

Data Types

Central to learning Java is the concept of primitive data types and those based on
Classes. A key area of difficulty for beginner Java programmers is converting
between the primitive data types and classes.

Primitive Data Types

Java supports a number of primitive data types such as boolean and int.

Type Size Default Contains Example Range
boolean N/A false true or false true

char 16 bits ‘/u0000’ Unicode
character

'q' \u0000 to \uFFFF

byte 8 bits 0 Signed
integer

4 -128 to 127

short 16 bits 0 Signed
integer

92 -32768 to 32767

int 32 bits 0 Signed
integer

331 -2147483648 to
2147483647

long 64 bits 0 Signed
integer

924321 -9223372036854775808
to 9223372036854775807

float 32 bits 0.0 Floating point 453.24 1.4E-45 to
3.4028235E+38

double 64 bits 0.0 Floating point 924521.421 4.9E-324 to
1.7976931348623157E+30

Further comments:

• Boolean – supports two possible values of true or false and can represent
the truth of an expression, yes or no, or on or off.

• Char – a 16 bit type representing a Unicode character.

• Byte, Short, Int and Long – similar integer types only varying in the range of

numbers they can store. Includes positive and negative numbers.

• Float and Double – similar floating point types only varying in the range of
the numbers they can store. Includes positive and negative numbers, as well
as a decimal component.

Java allows conversion between the integer and floating types. As a char may also
represent a number it can also be converted between the types. The only restricted
data type is the boolean which cannot be converted.

SAGE Computing Services All you (ever) needed to know about Java

Page: 21

Strings

Strings are implemented in java.lang.String. Internally it stores an array of
Unicode characters. The array is only accessible through the String class’s API.

To create a String:

01 String myString = "Hello " + " Java";

The String class provides a number of methods including:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

String myNumber = String.valueOf(15); // converts int to String
String myFloat = String.valueOf(32.1); // converts float to String
String myBoolean = String.valueOf(true); // converts boolean to String
String myString = "TRUE";
String abc = "abc";
String def = "def";

System.out.println(myNumber.equals(myFloat)); // false
System.out.println(myBoolean.equalsIgnoreCase(myString)); // true

System.out.println(abc.compareTo(def)); // -3

System.out.println(abc.startsWith(def)); // false
System.out.println(abc.startsWith("ab")); // true

System.out.println(abc.indexOf("b")); // 1
System.out.println(abc.indexOf("x")); // -1

System.out.println(" test ".trim()); // "test"
System.out.println("test".toUpperCase()); // "TEST"
System.out.println("TEST".toLowerCase()); // "test"

System.out.println("abcdefghijklmn".substring(4, 8)); // "efgh"
System.out.println("cat-dog".replace("-", " & ")); // "cat & dog"

SAGE Computing Services All you (ever) needed to know about Java

Page: 22

Dates

Dates and times may be stored in Java as long values, or via java.util.Date
or java.util.Calendar.

Behind the scenes Java stores all date and time values as a long representing the
number of milliseconds since midnight January 1st 1970 measured from Universal
Time (UTC), known as the epoch. The following statement retrieves the current
date-time in milliseconds from the epoch:

01 long now = System.currentTimeMillis();

The java.util.Date class is a wrapper on the long approach, and supplies
methods to:

01
02
03
04
05
06
07
08
09
10
11
12

long now = System.currentTimeMillis();
long then = System.currentTimeMillis() - (1000 * 60 * 60 *24);

Date nowDate = new Date(now);
Date thenDate = new Date(then);

System.out.println(nowDate.toString()); // Prints current date
System.out.println(thenDate.toString()); // Prints then date
System.out.println(nowDate.equals(thenDate)); // false
System.out.println(nowDate.compareTo(thenDate)); // 1
System.out.println(nowDate.before(thenDate)); // false
System.out.println(nowDate.after(thenDate)); // true

SAGE Computing Services All you (ever) needed to know about Java

Page: 23

Arrays

Java allows you to define fixed length arrays of elements in two fashions:

01
02

String[] stringArray = new String[3];
String[] stringArray = new String[] { "Red", "Green", "Blue" };

Array elements are accessed in the following manner:

01
02
03
04
05
06

String[] stringArray = new stringArray[] = { "Red", "Green", "Blue" };

for (int i = 0; i < stringArray.length; i++)
 System.out.println(stringArray[i]); // prints Red, Green, Blue

stringArray[1] = "Purple";

Accessing an element outside of an array’s bounds would raise an
ArrayIndexOutOfBoundsException exception.

Arrays are designed to store both primitive datatypes and object references.

Collections

Beyond the simple array structure, Java supports collections. Collections are
designed to support a collection of objects (eg. instances of classes), where the
number of objects may vary dynamically during the life of the program.

While the Collection classes are powerful, they cannot store primitive datatypes. To
store a primitive datatype you must use a Boxing Primitive class (see next).

Collections are implemented as classes themselves in the Java Collections
Framework. The Framework defines a number of interfaces such as:

• List – navigable collection of objects, eg. ArrayList
• Set – a collection with no duplicate elements, eg. HashSet
• Map – a collection of key-value pairs, eg. HashMap

SAGE Computing Services All you (ever) needed to know about Java

Page: 24

An example usage of ArrayList:

01
02
03
04
05
06
07
08

ArrayList students = new ArrayList();

students.add(new Student("Chris", "Muir"));// append student end of list
students.add(0, new Student("J", "Doe")); // add student start of list
Student student = students.get(0); // retrieves J Doe
System.out.println(students.size()); // prints 2
students.remove(student); // removes J Doe from list
students.clear(); // clears entire list

The full list of classes that implement the Collections Framework interfaces are
located in java.util. Consult the Java documentation for more information on
usages.

Boxing Primitives

A large amount of classes, including the Collection classes cannot store primitive
datatypes, only objects. In order to store primitive data types you must use one of
the boxing classes:

Primitive Boxing class
boolean Boolean
byte Byte
char Character
integer Integer
short Short
long Long
float Float
double Double

The bloxing class is a fully fledged Java class that can be instantiated with a primitive
datatype, to wrap the primitive such that it can be used and stored within an object
framework. eg:

01
02
03
04
05
06
07
08
09
10
11
12
13
14

import java.util.ArrayList;

...

int myInt1 = 5;
int myInt2 = 7;

ArrayList results = new ArrayList();

Integer result1 = new Integer(myInt1);
Integer result2 = new Integer(myInt2);

results.add(result1);
results.add(result2);

To convert between a primitive numeric type and the String class, you must make
use of the intermediate boxing primitive class. For example to convert from a String
to a float, or vice versa, the Float boxing primitive class must be used:

01
02
03

float myFloat = Float.valueOf("1234"); // String to Float to float

String myString = Float.toString(myFloat); // float to Float to String

SAGE Computing Services All you (ever) needed to know about Java

Page: 25

main() method

The main() method is a special method which we can add only once to a single
class within our application.

When attempting to run a program, Java searches for main() to start your program.
In other words main() is the main entry into your program provinding the starting
point.

You define main() as follows:

01
02
03
04
05
06
07

public class SomeClass {

 public static void main(String[] args) {
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

main() must be defined as a public static void method. It accepts an array
of Strings from the command line named args. Running the above code with the
following command line results in:

01
02
03
04
05

java SomeClass "hello" "Java" "Developers"

hello
Java
Developers

SAGE Computing Services All you (ever) needed to know about Java

Page: 26

Operators

Java supports a number of operators that may be used in expressions and
assignments:

Comparison Operators

> Greater than x > y Returns true when x is greater than y
< Less than x < y Returns true when x is less than y
>= Greater than or equal to x >= y Returns true when x is greater than or

equal to y
<= Less than or equal to x <= y Returns true when x is less than or equal

to y
== Equality x == y Returns true when x is equal to y
!= Inequality x != y Returns true when x is not equal to y

Boolean Operators

|| Or x || y Returns true when either x or y is true
&& And x && y Returns true when both x and y are true
! Not !x Returns true when x is false
^ Different x^y Returns true when x and y are different

Assignment Operators

= Assign x = y Assign y to x
+= Add variables x += y Add y to x and assign to x
-= Subtract variables x -= y Subtract y from x and assign to x
*= Multiple variables x *= y Multiple y by x and assign to x
/= Divide variables x /= y Divide x by y and assign to x
%= Modulus of variables x %= y Find the modulus of y into x and assign

to x

Arithmetic Operators

+ Addition x + y eg. 5 + 4 = 9
- Subtraction x - y eg. 5 - 4 = 1
/ Division x / y eg. 6 / 3 = 2
% Modulus x % y eg. 7 % 3 = 1

Increment/Decrement Operators

++ Increment ++x or x++
-- Decrement --y or y--

Bitwise and Shift Operators

~ Unary of Complement ~x Inverts data type bites
& And x & y Bitwise and on 2 values’ bits
! Or x | y Bitwise or on 2 values’ bits
^ Exclusive Or x ^ y Bitwise Xor on 2 values’ bits
<< Left shift x << 2 Shift bits to the left by 2
>> Right shift x >> 3 Shift bits to the right by 3

Brackets may be used in changing the outcome of an expression and its operators.

Expressions using operators evaluate in a left to right order in order of brackets,
indices, multiplication, division, addition and subtraction operators first. For more
information regards the evaluation order, refer to the Java specification:

SAGE Computing Services All you (ever) needed to know about Java

Page: 27

http://java.sun.com/docs/books/jls/third_edition/html/expressions.html

The ternary operator requires its own explanation. The ternary operator is a short
hand form for writing if statements. For example:

01 int myValue = (x && y) ? 4 : 6;

It reads if x && y are true, then return 4, else 6 to myValue. The expression
before the ? is the boolean expression to be evaluated. The first value after the ? is
the result to be returned if the boolean expression evaluates to true, else the second
value after the : is returned.

Conditional Processing

Similar to structured languages, Java includes the ability to undertake condition
processing:

If statement (and if else)

Java supports the following if constructs:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21

if (x < y)
 doSomething();

if (x < y) {
 doSomething();
 doSomethingAgain();
}

if (x < y) {
 doSomething();
} else {
 doSomethingElse();
}

if (x < y) {
 doSomething();
} else if (x > y) {
 doSomethingIfElse();
} else {
 doSomethingElse();
}

Switch

Java supports the switch construct:

01
02
03
04
05
06
07
08
09
10
11

int colour = 2;
switch (colour) {
 case 1 : System.out.println("Colour is Blue");
 break;
 case 2 : System.out.println("Colour is Green");
 break;
 case 3 : System.out.println("Colour is Red");
 break;
 default : System.out.println("Colour is most likely Brown");
 break;
}

SAGE Computing Services All you (ever) needed to know about Java

Page: 28

while loop

Java supports the following while loop construct:

01
02
03
04
05

int i = 0;
while (i < 10) {
 System.out.println(i);
 i++;
}

do loop

Java supports the following do loop construct:

01
02
03
04
05

int i = 0;
do {
 System.out.println(i);
 i++;
} while (i < 10);

for loop

Java supports the following for loop constructs:

01
02
03
04
05
06
07
08
09
10

for (int i = 0; i < 10; i++)
 System.out.println("Number " + i);

for (int i = 0, j = 10; i < j; i++, j--)
 System.out.println("Number " + i);

for (int i = 0; i < 10; i++) {
 System.out.println("Number " + i);
 System.out.println("umm...... ");
}

As of Java 5.0 the following for loop construct is also supported, synonymously
known as the for/in or for-each loop:

01
02
03

String[] colours = new String[] {"Red", "Green", "Blue"};
for (String s : colours)
 System.out.println(s);

SAGE Computing Services All you (ever) needed to know about Java

Page: 29

Exceptions

All exceptions raised in Java are classes. There are two exception base classes
java.lang.Error and java.lang.Exception. The Error class is
reserved for critical errors such as out of memory. The Exception class is for
programmatic exceptions raised by the programmer. Typically other exception
classes will extend these two base classes.

Java supports exception handling with the try & catch & finally constructs:

01
02
03
04
05
06
07
08
09
10
11
12

try {
 doSomething();
}
catch (AnException e1) {
 doSomethingE1();
}
catch (AnotherException e2) {
 doSomethingE2();
}
finally {
 doSomethingFinally();
}

Exceptions can only be handled within the try & catch block. Exceptions
occurring outside this code will not be handled unless higher on the stack a calling
module has surrounded the block with try & catch.

The catch block must explicilty state the Exception class it is handling. As all
Exception subclasses either extend the Exception or Error superclasses, to
write a generic catch handler you need only specify either of these classes.
Otherwise specify the specific Exception subclass.

The finally clause is optional. It is guaranteed to be called if 1 or more lines are
executed in the try block. It is ideal location for code to clean up any work done in
the try block such as closing open file handlers.

SAGE Computing Services All you (ever) needed to know about Java

Page: 30

Classes

Beyond defining a simple class, Java also supports the following class constructs:

Object Instantiation and By-Reference Variables

To instantiate an object, you must first declare a by-reference variable. Multiple by-
reference variables may act as a handle to the same instantiated object.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

Car firstCar = new Car("BMW");
Car secondCar;

if (secondCar == null)
 System.out.println("secondCar is null"); // secondCar is null

secondCar = firstCar;

if (secondCar != null)
 System.out.println(secondCar.getName()); // BMW

if (firstCar == secondCar)
 System.out.println("Only 1 car"); // Only 1 car

firstCar = null;

String carName = firstCar.getName(); // Raises null pointer exception

Extends

Class inheritance is implemented through the extend keyword:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

public class Person {
 String surname = "Muir";
 String firstName = "Christopher";

 public String getName() {
 return surname;
 }
}

public class Student extends Person {
 String studentNumber = "44323";
 String firstName = "Chris";

 public String getName() {
 return surname + " " + firstName; // returns "Muir Chris"
 }

 public String getSurname() {
 return super.surname; // returns "Muir"
 }

 public String getFirstName() {
 return this.firstName; // returns "Chris"
 }
}

SAGE Computing Services All you (ever) needed to know about Java

Page: 31

Abstract and Concrete Classes

An abstract class is one that is not instantiated directly, but rather is a template
defining that its subclasses must implement certain methods:

01
02
03
04
05
06
07
08
09
10
11
12

public abstract class Person {
 String surname = "Muir";
 String firstName = "Christopher";

 abstract String getName();
}

public class Student extends Person {
 public String getName() {
 return surname + " " + firstName;
 }
}

A concrete class is a class that extends an abstract class and all the abstract
methods required by the abstract class.

Interfaces

Similar to abstract classes, you may also define an interface class. An interface
class is not instantiated directly, but rather is a template defining that its subclass
must implement certain attributes and methods:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

public interface BankAccount {
 final int MIN_VALUE = 0;
 final double INTEREST_RATE = 1.004;
 double getBalance();
 void applyInterestRate();
}

public class SavingsAccount implements BankAccount {
 double balance = 50;

 public double getBalance() {
 return balance;
 }

 public void applyInterestRate() {
 balance *= INTEREST_RATE;
 }
}

The difference between an abstract and interface class, is an abstract class allows
you to define abstract methods that are fully implemented methods. Methods defined
in an interface class are totally abstract; in other words an interface method can not
have any implementation code.

Nested Classes

You may define nested classes:

01
02
03

public class Parent {
 public class Child {....}
}

The Child class is only accessible by the Parent class via the Child class’s public and
protected methods. All contents of the Parent class are accessible to the Child.

SAGE Computing Services All you (ever) needed to know about Java

Page: 32

Anonymous Classes

You may declare unnamed classes that implement interfaces. For example:

01
02
03
04
05
06
07
08
09
10
11

account.registerNewBankAccount(new BankAccount() {
 double balance = 50;

 public double getBalance() {
 return balance;
 }

 public void applyInterestRate() {
 balance *= INTEREST_RATE;
 }
});

This creates an anonymous instance of the BankAccount interface class with the
required methods getBalance and applyInterestRate and a local attribute
balance. The account.registerNewBankAccount method takes the
anonymous class as a parameter.

SAGE Computing Services All you (ever) needed to know about Java

Page: 33

Java Programming Tips

The following are some Java programming tips for programmers starting out with the
Java language, hopefully assisting in avoiding common pitfalls:

Comparing object with == and equals()

The equality of variables can be tested in two fashions in Java, using the == equality
operator or the object equals() method.

The equality operator is only effective for primitive data types. For example:

01
02
03
04
05
06

int myInt1 = 1;
int myInt2 = 1;

System.out.println(myInt1 == myInt2); // Returns true
myInt2 = 2;
System.out.println(myInt1 == myInt2); // Returns false

The equality operator cannot be used when comparing object types. Objects can be
compared for equality through their implementation of the equals() method. For
example:

01
02
03
04
05

Integer integer1 = new Integer(1);
Integer integer2 = new Integer(1);

System.out.println(integer1 == integer2); // Returns false
System.out.println(integer1.equals(integer2)); // Returns true

If you create custom classes and wish to test them for equality, you need to define
your own equals() method, programmatically undertaking the comparison and
returning a boolean result.

As the String data type is an object, it also supplies an equals() method. To
test the equality of 2 strings you should not use the == equality operator.

01
02
03

String apple = "Apple";

if (apple.equals("Orange"))

SAGE Computing Services All you (ever) needed to know about Java

Page: 34

null

The null keyword is a special literal value meaning “no object”. The null value is
unique in that it exists in all classes. It however does not exist for primitive types.

You may assign and test for null in your code, for example:

01
02
03
04
05
06
07

String myString = null;

if (myString == null)
 System.out.println("true"); // prints true

if (null == null)
 System.out.println("true"); // prints true

Note that in Java an empty string is not equivalent to null:

01
02
03
04
05
06

String myString = "";

if (myString == null)
 System.out.println("true");
else
 System.out.println("false"); // prints false

SAGE Computing Services All you (ever) needed to know about Java

Page: 35

Other Java Language Concepts

In understanding Java there is key additional terminology which it is useful to be
familiar with when reading Java documentation:

Design Patterns

Within software design, design patterns are standard solutions to common problems
in software design. The concept of design patterns originated from architecture in
the 1700s.

A design pattern itself is not a finished design. Rather it is a template for a solution to
a problem that frequently occurs in designing computing systems. Within an Object-
Oriented system it maps the relationships and interactions between classes and
objects.

The concept does not extend to algorithms as they solve computational problems
rather than design issues.

An understanding of Java does not need a detailed knowledge of design patterns.
However they are frequently acknowledged in Java and Object-Oriented
documentation, and as such an understanding of the concepts is useful.

Object Classification

In describing objects with certain characteristics, Java and Object-Oriented
programmers often classify objects into the following types:

• Singleton – limited to a single existence in a program regardless of the
number of users.

• Mutable – state can change at runtime.

• Immutable – instantiated with a fixed runtime state that does not vary.

• First-class - an object that can be used without restriction, typically at the

finest level of object granularity (ie. String class)

• Container – containing other object.

• Factory – creates other objects

JavaBeans

A JavaBean is a class that is designed for reuse, to be stored in a container, and
which conforms to a clear specification on how other Java code may interact with it.

A JavaBean does not have to implement or extend any other class to be a JavaBean.
It is not however restricted from implementing or extending other classes.

At its simplest, a JavaBean will conform to the following rules:

SAGE Computing Services All you (ever) needed to know about Java

Page: 36

• It must have a no-parameter constructor such that it may be created and

manipulated by bean tools.

• It exposes internal attributes (called bean properties) to the outside via
accessor routines, namely getter and setter methods. For example if the
bean has a property xValue, then it should have a getter method
getXValue() and setter method setXValue().

• The exception is for boolean attributes where the getter routine can either

have the prefix get or is, eg. getMyBoolean() or isMyBoolean().

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

public class myBean {
 int xValue;
 int yValue;

 myBean() {
 xValue = 0;
 yValue = 0;
 }

 public int getXValue() { return xValue; }
 public int getYValue() { return yValue; }

 public void setXValue(int newValue) { xValue = newValue; }
 public void setYValue(int newValue) { yValue = newValue; }
}

The complete JavaBean specification can be found at:

http://java.sun.com/products/javabeans/reference/api/index.html

JavaBeans make ideal classes for UI components, where the user may interact with
the JavaBean’s properties via the accessor methods.

Garbage Collection

The Java garbage collector takes care of deallocating memory rather than the
programmer having to explicitly do this. This is a key difference for programmers
with, for example, C++ and C backgrounds. In C++ routines are supplied to allocate
and deallocate memory from the heap when instantiating and destroying objects –
malloc() and free() respectively. The main issue with this approach ist if the
programmer forgets to free memory after use, a memory leak occurs consuming
memory until the entire program is killed.

The garbage collector in Java takes care of deallocating memory for the programmer,
meaning the programmer does not explicitly have to deallocate instantiated objects
and thus avoids potential memory leaks. Once a program de-references an
instantiated objects (ie. the objects falls out of scope of the current routine), the
routine is marked ready for collection. At a periodic interval or certain event, the
garbage collector is called and deallocates de-referenced objects such that the
memory is reclaimed.

