[image: image4.png]

Getting More out of APEX - Using AJAX Advanced Features
Introduction
During this workshop you will incorporate AJAX into a simple APEX page to do basic database DML and report refresh without page submit. The workshop will also demo if time allows how to incorporate Spry components and do inline report editing.

There are two main components to using AJAX with APEX:
1) PL/SQL
2) Javascript.

PL/SQL pulls the data back from the database and javascript calls the PL/SQL ondemand without a page refresh.

Definitions

AJAX:

Ajax (asynchronous JavaScript and XML), or AJAX, is a group of interrelated web development techniques used for creating interactive web applications or rich Internet applications. With Ajax, web applications can retrieve data from the server asynchronously in the background without interfering with the display and behavior of the existing page.[1] Data is retrieved using the XMLHttpRequest object or through the use of Remote Scripting in browsers that do not support it. Despite the name, the use of JavaScript, XML, or its asynchronous use is not required. (wikipedia)
Workshop Objective:

This page will allow the user to select products from either a drop down or from a checkbox and details such as a price list and product description will be displayed using AJAX.
Workshop Instructions:

Log into Application Express – URL and Logon details will be provided.)
Open up the application as instructed– everyone will have their own application to work on.
· Page 1 is what we will be editing – title Workshop.

· Page 2 is the finished product– title Workshop Completed.

Step 1) Create our PL/SQL call to return the data

Menu options: Back at the Application level, navigate to Shared Components then Application Processes.
[image: image5.jpg]
The GET_ITEM Application Process has already been created for you as below.

This basically concatenates item_name and description together and sends it back to the page as an HTP.P call.

TEMPORARY_ITEM is a page level item which stores our item_id.
Code for GET_ITEM is below:

declare

v_Item_Name varchar2(32000) := '';

begin

begin

select item_name || ‘~’ || description

into v_item_name

from zbr_item

where item_id = v('TEMPORARY_ITEM');

exception when others then

htp.prn('Error');

end;

htp.prn(v_item_name);

end;
Important: Make sure this is run ON DEMAND
Step 2) Setting up the Javascript:

Copy and paste the following javascript to the region titled “Javascript” in page 1.
This does the work of calling the PL/SQL procedure and retrieving and parsing the data. I have also included an APEX report which we are returning.
<script language="JavaScript" type="text/javascript">

<!--

function getItemDetails (itemid, itemname, itemdesc){

var itemnameObj = document.getElementById(itemname);

var itemdescObj = document.getElementById(itemdesc);

var get = new htmldb_Get(null,$x('pFlowId').value,'APPLICATION_PROCESS=GET_ITEM',0);

 get.add('TEMPORARY_ITEM',itemid.value);

gReturn = get.get();

get = null;

 test = gReturn.substr(0,5);

 if (test=='Error') {

 alert (gReturn);

 }

 else {

 itemnameObj.innerHTML= gReturn.substr(0,gReturn.indexOf('~')) ;

 itemdescObj.innerHTML= gReturn.substr(gReturn.indexOf('~')+1,gReturn.length-gReturn.indexOf('~')) ;

}

var get = new htmldb_Get(null,$x('pFlowId').value,null,5);

gReturn = get.get(null,'<htmldb:BOX_BODY>','</htmldb:BOX_BODY>');

get = null;

$x('REPORT_HOLDER').innerHTML = gReturn;

return;

}

//-->

</script>
CODE OVERVIEW
1) Calling a PL/SQL Application Process and returning values

Prerequisites:

· APPLICATION_PROCESS GET_ITEM must be created.

· I have a region called PlaceHolder with the regions source as follows:

<p>Item Name: <b id='P1_ITEM_NAME'> </p>

<p>Description: <b id='P1_DESCRIPTION'> </p>
These items hold the values returned from my PL/SQL procedure.

WHY not APEX items – mainly for formatting purposes for the project this page was created for.

Code Overview:

var get = new htmldb_Get(null,$x('pFlowId').value,'APPLICATION_PROCESS=GET_ITEM',0);

htmldb_Get is the built in APEX call for AJAX.

The important call is 'APPLICATION_PROCESS=GET_ITEM' – GET_ITEM is the name of our application process containing the PL/SQL call to the database covered shortly.

get.add('TEMPORARY_ITEM',itemid.value);

Get.add – this places the value of itemid into an APEX item called TEMPORARY_ITEM. This is just a hidden item I have created on the page. The purpose of this is so the application process can then pick this value up and use it.

gReturn = get.get();
This returns the value of get_item into gReturn.
My return value is in the format ITEMNAME~ITEMDESC – tilda separated. The following is the javascript to parse the return value and pass these out to the two javascript

 itemnameObj.innerHTML = gReturn.substr(0,gReturn.indexOf('~')) ;

 itemdescObj.innerHTML = gReturn.substr(gReturn.indexOf('~')+1,gReturn.length-gReturn.indexOf('~')) ;
2) Calling a Report Page and returning values

Prerequisites:

· I have a report created on Page 5 of this application which returns all the item_prices where item_id = TEMPORARY_ID.

· I also have created a region called Zebra Prices with a source as follows:

<div id=REPORT_HOLDER></div>
This div will be used to hold the report content.

var get = new htmldb_Get(null,$x('pFlowId').value,null,5);

The important part of this call is the number 5 – which basically means run page 5 and return the contents to the get variable.

gReturn = get.get(null,'<htmldb:BOX_BODY>','</htmldb:BOX_BODY>');

Get all the content between the htmldb:BOX_BODY tags. Which is hopefully just the main report content.

$x('REPORT_HOLDER').innerHTML = gReturn;

Place this content into the REPORT_HOLDER div we created in the Zebra Prices region.

Step 3) Calling the JavaScript:

Lastly we need to call the JavaScript (getItemDetails)– in this example we call it from two places
Firstly from the checkbox created in the report region, and secondly from the drop down select list.

1) Call from the checkbox

Open up the report region Pack and edit the SQL source so it appears below.
select APEX_ITEM.CHECKBOX(1,item_id,'onClick="if (this.checked) {getItemDetails(this, ''P1_ITEM_NAME'',''P1_DESCRIPTION'');}"') item_id_check, item_name
from "ZBR_ITEM"

When the checkbox is clicked it will call the getItemDetails function from our Javascript region. It passes in the current item_id (this), and the names of the other form variables to populate.
[image: image2.png]
Here is my report source – I am creating a checkbox and a value of item_id – when run it looks like:

2) Call from the SELECT List
We will also call this from our SELECT list drop down
Open up the properties for P1_ITEM_NAME_LOV and under the Element section in the HTML Form Element Attributes property copy the following.
onChange="javascript:getItemDetails(this, 'P1_ITEM_NAME','P1_DESCRIPTION');"
[image: image3.png]
APPENDIX

[image: image1.png]Biography:
Sarah Sinclair has working in the IT industry for around 15 years. First at the University of Waikato and then later for Asparona.
She now works from home for her own consulting company Specialist Solutions Ltd doing mainly Oracle work and looking after Hannah.
Current areas of expertise are: advanced APEX and AJAX development and Java (Jdeveloper) and Forms integration.
Table SCRIPTS

CREATE TABLE "ZEBRA"."ZBR_ITEM"

 (
"ITEM_ID" NUMBER NOT NULL ENABLE,

"ITEM_NAME" VARCHAR2(4000 BYTE) NOT NULL ENABLE,

"DESCRIPTION" VARCHAR2(4000 BYTE),

"PRICE" NUMBER,

"TAX_CODE" VARCHAR2(1 BYTE),

"ACCOUNT" VARCHAR2(4000 BYTE),

"ORG_ID" NUMBER DEFAULT sys_context('zebra','org_id') NOT NULL ENABLE,

"CREATED_BY" VARCHAR2(4000 BYTE) NOT NULL ENABLE,

"CREATION_DATE" DATE NOT NULL ENABLE,

"WEB_CATEGORY_CODE" VARCHAR2(100 BYTE),

"WEB_ENABLED_FLAG" VARCHAR2(1 BYTE) DEFAULT 'Y',

 CONSTRAINT "ZBR_ITEM_PK" PRIMARY KEY ("ITEM_ID"))
CREATE TABLE "ZEBRA"."ZBR_ITEM_PRICE_BREAK"

 (
"ITEM_PRICE_ID" NUMBER NOT NULL ENABLE,

"ITEM_ID" NUMBER NOT NULL ENABLE,

"PRICE" NUMBER,

"QTY_LOW" NUMBER,

"QTY_HIGH" NUMBER,

"ORG_ID" NUMBER DEFAULT sys_context('zebra','org_id') NOT NULL ENABLE,

"SPECIAL_FLAG" VARCHAR2(1 BYTE) DEFAULT 'N',

"DISCOUNT_AMOUNT" NUMBER DEFAULT 0,

 CONSTRAINT "ZBR_ITEM_PRICE_BREAK_PK" PRIMARY KEY ("ITEM_PRICE_ID"))
XML example:

Shared Process – Generates XML to send
declare

 l_counter number;

 l_o_name varchar2(2000);

begin

 owa_util.mime_header('text/xml', FALSE);

 htp.p('Cache-Control: no-cache');

 htp.p('Pragma: no-cache');

 owa_util.http_header_close;

htp.prn('<select>');

for rec in (select "RANDOMDATA"."CATEGORY" as "CATEGORY",

 "RANDOMDATA"."NAME" as "NAME",

 "RANDOMDATA"."ID" as "ID"

from "RANDOMDATA" "RANDOMDATA"

where "RANDOMDATA"."CATEGORY" = :TEMPORARY_ITEM)

loop

htp.prn('<option value="' || rec.id || '">' || rec.name || '</option>');

end loop;

htp.prn('</select>');

end;
Javascript function to ‘catch’ the XML

<script language="JavaScript1.1" type="text/javascript">

 function get_AJAX_SELECT_XML(pThis,pSelect){

var l_Return = null;

var l_Select = $x(pSelect);

var get = new htmldb_Get(null,$x('pFlowId').value,'APPLICATION_PROCESS=otn_Select_XML',0);

get.add('TEMPORARY_ITEM',pThis.value);

gReturn = get.get('XML');

if(gReturn && l_Select){

var l_Count = gReturn.getElementsByTagName("option").length;

l_Select.length = 0;

for(var i=0;i<l_Count;i++){

var l_Opt_Xml = gReturn.getElementsByTagName("option")[i];

appendToSelect(l_Select, l_Opt_Xml.getAttribute('value'), l_Opt_Xml.firstChild.nodeValue)

}

}

get = null;

 }

 function appendToSelect(pSelect, pValue, pContent) {

 var l_Opt = document.createElement("option");

 l_Opt.value = pValue;

if(document.all){/* why is ie different ask bill */

pSelect.options.add(l_Opt);

l_Opt.innerText = pContent;

 }else{

l_Opt.appendChild(document.createTextNode(pContent));

pSelect.appendChild(l_Opt);

}

}

</script>
Select item on_change event onchange="get_AJAX_SELECT_XML(this,'P37_SELECT_DROP_XML')"
Getting More out of APEX - Using AJAX Advanced Features
NZOAUG Conference Oct-2008

[image: image4.png]