

NZOUG 2003 Paper 48 Page 1

Space Management

Ari Statham

Oracle DBA

Data4 Limited

Scope

Businesses are becoming more and more dependant on
the availability of corporate databases and the business
information they hold. To ensure that databases are
constantly available and can grow as required, incurring
only minimal performance penalties, administration of
the database must include space management.

This paper examines why space management is
important and the information requirements for a DBA to
manage space within an Oracle database. The paper also
describes space management techniques including
reorganisation and data archiving.

Exclusions
These subjects might be considered to be related to Space
Management, but are not in the scope of this paper.

• Oracle Managed Files

• Oracle Flexible Architecture

• Volume / Filesystem Design and Management

• Archive Log Management

• Datafile Mapping / Distribution

• Undo Space Management

• Transportable Tablespaces

Disclaimer
This document does not attempt to replace the need for
Oracle manuals, bug databases or experimentation. The
aim of the document is to bring attention to the
challenges, concepts, features and techniques that DBA’s
should know about in order to manage the space inside of
Oracle databases.

Importance of Space Management

Space management is important in all Oracle databases
to some degree. One or more of the following aims will
usually be applicable.

Aims of Space Management

Handle Data Growth

The most critical deliverable of good space management
is the assurance that all the databases’ functions will be
performed without failures that are caused by a lack of
capacity.

Maintain Data Density

Space management can have a significant influence over
the performance of an active database, by maintaining
the density of the data stored in the various database
structures.

Reduce Administration Effort

The workload of the DBA can be reduced by using
sensible space management policies and monitoring
software. Various tools and database features can make
detecting and correcting capacity problems easier.

Avoiding outages and large reorganisations should also
be an aim of space management.

Increase Efficiency of Data Storage / Retrieval

If disk capacity is a restricted resource, then space
management policies can be used to control the size of a
database.

The way that objects are stored in the database can affect
the efficiency of I/O and caching.

Space Management Theory

Provision for the Growth of Data
Most live databases grow over time.

The three challenges that growth presents are

• To ensure the availability of the application by
providing adequate capacity

• To maintain acceptable performance levels

• To keep the database manageable in regards to
administration tasks

Oracle databases allow space for growth at a number of
levels

• Tablespaces have free blocks for new extents

• Extents have free (unused) blocks for new data

• Blocks have free bytes for new (or growing)
rows

• Rows may have allocated space for new data
(depending on the datatypes and order of the
columns)

Pre-allocating space to avoid growing pains can have the
side effects of decreased data density, wasted space and
increased effort & resource requirements when
performing administration tasks, such as backups.

Therefore, if space or performance is an important factor,
then some care should be taken when managing space to
create an efficient database.

NZOUG 2003 Paper 48 Page 2

Table and Index Expansion

Number of Extents

In years past, the number of extents that could form a
segment was limited by the block size. (The extent map
had to fit within half of the segment header block). Since
Oracle 7.3, segments have been freed from this
restriction by allowing the chaining of additional extent
map blocks.

It is amazing to find that there are still databases today
with application tables and indexes that have a limited
number of extents. Eliminating the risk of transactions
failing due to segments being unable to extend is surely
important enough to make using the ‘unlimited extents’
feature universal.

There are still reasons to control the number and size of
extents, which are discussed in the next section,
“Multiple Extents”.

Free Space

The tablespaces that hold growing objects should have
enough chunks of free space to accommodate new
extents for the near future (at least). Pre-allocating
several years worth of free space might not be an option
when disk space or backup capacity is limited. A useful
alternative is to allow each tablespace to grow
dynamically as required.

Multiple Extents

How Many Extents Are Too Many?

Before insisting on a reorg to recreate an object because
it has multiple extents, consider if there is any
justification for this decision.

A DBA should be sure of the benefits before taking an
action that has risks and costs associated to it.
Recreating the object in fewer and larger extents may
leave a number of small fragments of free space in the
tablespace. An outage, backups, planning and DBA time
may be required in a large production environment.
Having multiple extents can be important to the
application’s performance in some situations, e.g. when
parallel queries rely on a table’s extents being physically
located on different disks.

Access to the extent map isn’t required when a block is
referred to directly. This type of access occurs with
reads of undo blocks, index blocks, header blocks and
table blocks via indexes.

Full table scans or fast full index scans may need to
access the extent map, but this information will often be
cached, and the cost of accessing it is insignificant when
compared to the size of the data being processed.

Dropping an object with thousands of extents can take
longer than an object with one extent, (especially if not
locally managed), but the performance of dropping an
object is not usually a concern. If it is a regular
occurrence, then the extents should be sized
appropriately (or temporary tables should be utilised).

Dictionary Managed Tablespaces

Free extents are stored in fet$ and are clustered with
tablespace rows. Default sizing allows for 1 block per

tablespace, (i.e. approximately 500 free extents per
tablespace assuming an 8KB block).

Used extents are stored in uet$ and are clustered with
segment rows. Default sizing allows for an average of 5
extents per segment. (The space in a block is shared, so
if some segments have more, others may have less).

If the extent information is larger than will fit into one
block, it is put into a new chained block.

The number of extents does not affect parsing, and tests
will show no significant effect on segment access. It can
be assumed that the data dictionary performance would
be adversely affected by segments being allowed to grow
thousands of extents. The degree of this effect would be
difficult to measure, but because of the various levels of
caching involved, it seems unlikely to be significant.

Another thing to consider is contention for the sole ST
(Space management Transaction) enqueue. Whenever
uet$ or fet$ are changed, (i.e. adding or removing
extents, or coalescing free extents), the ST enqueue is
held, preventing concurrent space management
transactions.

Locally Managed Tablespaces

When a segment has more extents than can fit into a
segment header block, extent map blocks are created. An
8KB block can hold about 1000 extent entries, (and 500
in the segment header). If the extent size is 1MB, then
the overhead of a full table scan is performing a
sequential read of a single 8KB block after reading the
first 500M B of data, and then again after each
subsequent 1000MB.

Selecting from DBA_EXTENTS will have to read all
segment header and extent map blocks instead of using
the data dictionary. This seems unlikely to cause a
performance problem.

Extent Size

The extent size is more important than the number of
extents. It affects the capacity required for storage and
the efficiency of data retrieval.

The smaller the extent size, the less storage space is
wasted. Off-the-shelf applications commonly have many
small or empty tables and indexes. Using large extents
for these objects would waste a lot of space.

When index or table segments are fully scanned, the
number of blocks read with one I/O request is the
minimum of the extent size and the multiblock read
count. If a segment has more than one extent, and that
extent is not a multiple of the multiblock read count then
its size is inefficient for full scans.

Even though these scattered block reads may not
translate to contiguous reads on the disk device, (due to
the conspiracy of filesystems, volume management, raid
devices, buffering and multi-user environments), the
number of I/O requests can be minimized by choosing an
extent that is a multiple of the multiblock read count.

“A Reorg Made it Faster”

There are many reasons that recreating a table and its
indexes can affect the performance of an application.

NZOUG 2003 Paper 48 Page 3

When a performance improvement is noticed, it is most
likely to be because the data has been repacked into
blocks more efficiently; not because the number of
extents has been decreased.

Related Segment Expansion

As a database grows, there may be an increased use of

• Temporary segment space

• Rollback / Undo segment space

• Working table space

These structures should not be considered static if the
data in the database is growing.

Partitioning

This feature can be extremely useful to create a
manageable and scalable database, by partitioning the
tables and indexes that hold the growing data.

It is especially good at handling rolling data, e.g. data
with recent dates replacing data with old dates.

Data Archiving

As a database grows, more resources are required to
perform existing application functions. Although
managing the extra demand for archive log storage,
latches, I/O bandwidth, network bandwidth, memory and
CPU resources are not within the scope of this paper, it
should be mentioned that archiving data can be an
effective method to control this demand.

Often the most recent data in a database is more
frequently accessed than old data. The old data might be
summarised and migrated out of the database, or at least,
out of the active application tables.

Removing historical data will help maintain the
performance levels of the application and administration
functions.

Data archiving can be built into the application,
implemented using Oracle’s partitioning option, or
carried out using a third party tool.

Data Density
Space management is concerned with controlling how
much space is required to store databases’ data. Sparsely
stored data requires more disk capacity, CPU power
(handling), I/O bandwidth and memory for buffering
than densely packed data.

If the performance of a database is important, then the
DBA should put some effort into controlling the data
density of the relevant objects.

Data density is relevant at many levels of storage, but it
really comes down to how many blocks are used to store
the data.

Over time, DML and DDL operations can cause data
density to change, hence the need to monitor and
improve data density.

Reasons Data Could Become Sparse in a Table

Migrated Rows

Migrated [un-chained] rows are stored in two blocks
instead of one. It could be considered a sparse row.

This happens when the row grows too large for its
current block, and has to migrate the row body to another
block. The row header must remain in the original block,
because the row will keep the same rowid for its lifetime.

The frequency of row migration depends on

• the settings of PCTUSED and PCTFREE

• the table’s update characteristics

• column additions or modifications

• column order

Columns Dropped or Modified

When rows are made smaller by removing or reducing
columns then the blocks will contain more free space.
Ideally, this table would be recreated afterwards to
‘repack’ the rows into the blocks.

A Large Infrequent Delete

A large delete will leave a lot of free space in the blocks
under the high water mark. If the delete process is
infrequent, then it might be some time before an
equivalent level of data density is restored.

Decreasing Clustering Density

If all the data in a table is loaded in the order of an
indexed column(s), then the effectiveness of the index is
better than if the data was randomly loaded. This is
because each key will point to fewer table blocks,
reducing the cost of retrieval, (known as the clustering
factor).

After a period of inserts and deletes, the clustering factor
is likely to decrease. This could be justification of a
reorganisation of this table.

PCTUSED and PCTFREE

PCTFREE controls the amount of space in a block
reserved for updates to existing rows.

PCTUSED controls when the block is added to the
freelist after rows are deleted, i.e. when the block
becomes available again for new rows to be inserted.

If a table’s rows are not updated at all, or are updated in a
fashion that doesn’t increase any row’s length, then a low
PCTFREE (e.g. 1%) is appropriate.

If deletes occur in the table, then the PCTUSED setting
comes into play. The cost of using a high PCTUSED
setting to increase data density, (the number of rows per
block), is the overhead to maintain the freelists. When
the sum of PCTUSED and PCTFREE approaches 100, the
blocks are more likely to be placed on and off the
freelists with each delete, update or insert.

It is common to see databases where every application
table and index has the default settings for PCTUSED and
PCTFREE. In most cases they are reserving more space
in each block than is required.

NZOUG 2003 Paper 48 Page 4

Occasionally, the PCTFREE setting is not high enough to
prevent row migration in a table.

With 9i’s Automatic Segment Management, the
configuration of freelists and PCTUSED are no longer
required. See the section entitled “Space Management
Techniques – Prevention of Problems”.

Reasons Data Could Become Sparse in an Index

The insertion of random keys naturally results in an
average of 75% data density in an index. (Assuming no
deletions).

Rebuilding the index will save space, but after DML, it
will eventually grow to its natural density again.

The ordered insertion of increasing keys results in an
average data density approaching 100%. (Assuming no
deletions).

The PCTFREE setting is only used when an index is
(re)created. A low setting will pack the keys into leaf
blocks, but won’t allow any room for new keys. Unless
the index is a Right Hand Index, (new keys are always
higher than the others), or the data is not frequently
changed, then the trade off of a low PCTFREE setting is
that the blocks will have to split to accommodate new
keys, taking CPU time and halving the data density for
the affected blocks.

Right Hand Indexes

If data is inserted with new keys and deleted data had
keys that are never used again then indexes will continue
to grow. E.g. key=sysdate and rows with old dates
are deleted.

While the data in the new leaf blocks will be densely
packed, there may be older leaf blocks that are almost
empty. Unused branch blocks are never freed, so the
index will continue to grow in size. References to
unused branch blocks take up space in the branch blocks
above, which can increase the number of levels in the
index.

Updates to Indexed Values

If the indexed values are updated and the old value
ranges aren’t used again, then, as above, there will be
unused branch blocks not being freed.

A Large Infrequent Delete

In a similar manner to the effect on the density of table
blocks, the index blocks can suddenly become sparse
after a large delete. The density of the index will remain
low until the index is rebuilt or the volume of data
deleted is replaced with inserts.

Data Compression

Tables that are not subject to much DML might be
suitable candidates for data compression, for example,
read only archived data.

Compression ratios can sometimes be increased by
ordering the rows in the table, because this may increase
the repetition inside each block. If there are more
common values in each block, then more data can be
replaced with references to the shared symbol table,
increasing the data compression ratio.

Index Compression

Repeated keys in index leaf blocks can be replaced with
a reference to a shared symbol table. The degree of
compression will vary depending on the size and
repetition of the keys chosen to be compressed.

Administration Effort

Prevention

If the storage configuration of a database is well planned,
then there is often little effort required in actively
managing the space in a live database, e.g. using:

• Locally Managed Tablespaces (LMT)

• Automatic Segment Management (ASM)

• Auto-extending datafiles

• Sensible extent sizes

• Flexible rollback segments (using the optimal
setting)

• Sensible PCTFREE/PCTUSED settings

• Sensible freelist settings

Monitoring and Alerting

Software or scripts can be used to automatically monitor
the database and alert the DBA of any potential problems
before the queries or transactions fail.

Reorgs

Regular database reorganisations should be avoided.
Objects should only be reorganised if there is a real
reason to do so. The more recent the version of Oracle,
the more ways there are to minimise the loss of
availability.

Multiple Extents

If a segment has thousands of extents and its tablespace
is managed by the data dictionary, then the performance
of dropping the object would be expected to be poor.

This problem can be avoided by using a locally managed
tablespace or more appropriate extent sizes in pre-Oracle
8i databases.

Wasted Space
If the size of the database is a concern, then this matter
can be addressed at a number of levels.

Row

If there are many rows in a table, then inflated row sizes
can have a significant effect, e.g.:

• CHAR types instead of VARCHAR2

• Null-able columns not trailing

• Number precision and scale too high

NZOUG 2003 Paper 48 Page 5

Block

The PCTUSED and PCTFREE settings may be reserving
too much free space. (Automatic Segment Management
in 9i removes the need to set PCTUSED).

Segment

The last extent allocated might be larger than is required
to hold the data expected in the near future.

If only direct inserts are used to populate a table, then all
new rows are loaded above the high-water mark. If data
is also deleted, then the segment will continue to grow,
with old blocks being empty or nearly empty.

Tablespace

Wasted space in tablespaces is due to:

• Tablespace fragments that cannot, [or are
unlikely to], be used by any segment in that
tablespace due to their small size.

• The tablespace having been created larger than
is required to hold the data expected in the near
future.

Space Management Techniques

Prevention of Problems

Locally Managed Tablespaces

Use LMTs if they are available.

System Allocated Extents

The algorithm behind this is more complex and not well
known; therefore its behaviour is less easily predicted.
The benefit of using this method of extent allocation is
that it will waste little space when there are many small
objects and a few large ones in the same tablespace. This
is because it will use both small and large extents
depending on the size of the object.

Uniform Extent Sizes

Using uniformly sized extents is a simple way to
eliminate fragmentation. The only downside to this
method of extent allocation is that it may waste space
when a tablespace must contain many objects of vastly
varying sizes. For example, it is common for off-the-
shelf applications to require that many empty tables
reside in a certain tablespace that also contains larger,
growing tables.

Dictionary Managed Tablespaces

Simulate Locally Managed Uniform Extents

Use a PCTINCREASE of 0 and the same value for initial
and next extents. If the Oracle version is 8.0, then the
minimum extent clause could be used to enforce all
extents to be a multiple of a certain value.

Automatic Segment Management

This optional feature of LMTs replaces the use of free
lists to manage which into which blocks new data will be
inserted. At the beginning of each extent, a number of
blocks are reserved for use as bitmap blocks. These
bitmaps contain information about each block’s status:

• block full

• less than 25% free

• between 25% and 50% free

• between 50% and 75% free

• 75% or more free

• block empty (unformatted)

This feature removes the need for the DBA to manage
the free list configuration and PCTUSED settings, by
providing an automatic method that allows high
concurrency. Instead of a block being considered free or
not, the capacity range is known for each block, assisting
Oracle to utilise space efficiently.

The costs of using ASM are the storage and handling
necessary for the bitmap blocks, and that some blocks
below the high water mark may be unused, (affecting the
efficiency of full table scans and bitmap indexes).

Efficient Extent Sizes

When choosing an extent size, a DBA should consider
the expected size of the objects in the tablespace and the
multiblock read count. Extents may have to be small if
disk capacity is tight, but otherwise they should be a
multiple of the multiblock read count that is large enough
to prevent a ridiculous number of extents. (It is usually a
good idea to set the multiblock read count to the platform
maximum).

Data Dictionary Tuning

Some of the data dictionary objects in the SYSTEM
tablespace may not be sized optimally for a particular
application by default.

The file sql.bsq is used to make these system objects
when the database is created. If a development or test
environment has been created previously, then it may be
examined to learn how better to allocate space in the
production database at creation time.

Segments that would quickly grow to have multiple
extents can be created with larger initial and next extent
sizes.

Chaining of the cluster blocks can be mitigated by
careful adjustment of the size value.

In regards to the cluster c_obj#, comments in the file
sql.bsq state:

• A table of 32 columns, 2 indexes (2 columns
each) requires a size of about 2KB

• A table of 10 columns, 2 indexes, (2 columns
each) requires a size of about 750B

• The default size is 800 Bytes

NZOUG 2003 Paper 48 Page 6

According to the file sql.bsq, the default size value
for the cluster c_file#_block# is based on 5 *
sizeof(uet$), i.e. 5 used extents per segment.

Careful Use of Direct Inserts

Direct inserts only place new data in blocks that are
above the high water mark. Even after deletes, the tables
will continue to grow. These tables must be truncated or
recreated if the free space is to be recovered.

Tablespace Contents

System Tablespace

The system tablespace should not contain any foreign
(application or tool) segments.

It is probably best to leave the system tablespace alone
until Oracle 9iR2, when it can be locally managed. The
only exception to this might be to employ a minimum
extent restriction on the system tablespace to control
fragmentation.

Temporary Tablespace

All users should use a dedicated temporary tablespace.
In Oracle 9i, a temporary tablespace can be declared as
the default, replacing the usual default which is the
SYSTEM tablespace.

Segments Characteristics

Segments with different characteristics ideally should be
placed into different tablespaces. The following factors
should be considered:

• Growth of the segment

• Size of the segment

• Type of the segment – rollback, temporary,
index, table, partition, etc

Block Sizes

Best Multipurpose Block Size

In most real life (UNIX) situations, direct I/O has been
ignored, and the operating system uses some sort of
buffering for the datafiles. In these cases, the database
block size should match the OS / filesystem buffer block
size, because it is more efficient for reading and writing.

Quoting from the Oracle tuning manual:

“Tests have proven that matching the database block size
to the UNIX file system (UFS) block size provides the
most predictable and efficient performance. “

Benefits of a Larger Block Size

Indexes will have less leaf and branch blocks, resulting
in smaller trees. Range scans and index probes may have
fewer blocks to access.

Larger rows will be able to fit into a single block,
reducing chaining.

Less overhead is required to manage a smaller number of
blocks.

Benefits of a Smaller Block Size

With a smaller block size, data is handled at a more
granular level, possibly resulting in more efficient
buffering and reduced contention.

Non-Standard Choices

Oracle 9i allows tablespaces to have non-standard block
sizes. This allows groups of segments to have
appropriate block sizes. It also allows the sharing of
tablespaces between databases with different block sizes.
The administration complexity increases when this
option is used, e.g. maintaining a specific buffer pool for
the non-standard block size.

Datafile Auto-Extension

If a datafile of each tablespace is set to ‘auto-extend’
then segments will only fail to find free space for
extension if the underlying storage fills up or the datafile
reaches its maximum size.

In some environments, e.g. a development database, it
can be useful to limit the growth of tablespaces such as
the temporary one. Users running ad-hoc statements may
make a mistake and cause an auto-extending datafile to
grow far larger than is usually necessary. In these cases,
it is preferable that the statement fails rather than allow it
to continue hogging the system’s resources.

Resumable Space Allocation

Instead of failing, rolling back, and reporting an error to
the application, the resumable space allocation feature
can be activated for a session to suspend a statement that
cannot complete due to an inability to allocate extra
space. The idea is that the DBA is given a chance to fix
the space problem, before the session times out and
returns an error message.

This feature may be employed as a safety net, although it
really shouldn’t be needed if the database’s capacity is
well configured and monitored.

Detection of Problems

Free Space

Check that sufficient free space for short term expansion
exists or can be automatically made available. This
applies to temporary, undo, table and index objects.

Number of Extents

Check that no objects are nearing their maximum number
of extents.

Tablespace Fragmentation

Check the number and sizes of free space chunks. It may
be necessary to examine the extent layout in the datafiles
to gain a full understanding of any fragmentation.

Check the sizes of next extents and the value of
PCTINCREASE for segments in tablespaces that are not
locally managed.

NZOUG 2003 Paper 48 Page 7

Sparse Tables and Indexes

The relevant data in DBA_INDEXES and DBA_TABLES
is updated using the ANALYZE command.

For tables, compare the average number of rows per used
block to the maximum number of rows that could fit into
a block.

For indexes, compare the average number of keys (and
rowids) that the leaf blocks are storing, compared to
the maximum number that could fit into a block.

Further information can be obtained about indexes by
viewing the INDEX_STATS view or by dumping the
index to a trace file.

The supplied package DBMS_SPACE can also be used to
obtain information about segment block usage.

Chained Rows

Check the V$SYSSTAT view for table fetches by
continued row, and the chain_cnt column of
DBA_TABLES.

Appropriate Tablespace Usage

Check that

• no application segments are in the SYSTEM
tablespace

• every user points to the correct temporary
tablespace

• all segments are in their correct tablespaces

Clustering Factor

Check the DBA_INDEXES view for the number of rows
and leaf blocks compared to the
clustering_factor. A table that is well ordered
for a particular index will show a clustering factor that is
close to the number of leaf blocks.

Correction of Problems

Index Rebuilds

Indexes can be rebuilt to correct the density, structure or
storage parameters.

This can be done online depending on the index type and
the Oracle version.

Indexes can also have their leaf blocks coalesced to
improve their density, without changing the branch
structure.

Table Rebuilding

Tables can be rebuilt to correct the density, structure or
storage parameters using the ALTER TABLE MOVE
command.

This can be done online depending on the table type and
the Oracle version.

After rebuilding a table, its indexes require immediate
rebuilding because they will have been rendered
unusable.

CTAS

Tables can be recreated with rows in a particular order,
different storage parameters or with differing data (e.g.
simulating a large deletion), using the CREATE TABLE
AS SELECT and RENAME commands. This process
can optionally take advantage of parallel processing and
nologging parameters.

This may be preferable to exporting and importing or
cleaning up after large deletions.

Export / Import

Exporting and importing objects has been a method of
reorganisation for a long time. It is possible to customise
the DDL, and so alter the storage parameters, as well as
repacking the data.

Adjust Storage Parameters

Some parameters can be changed easily, but will
obviously not take affect retrospectively. For example,
increasing the value for PCTUSED will not immediately
increase the number of blocks on the free list, and
altering PCTINCREASE value will not change the sizes
of the existing extents. However, these changes will
prevent existing problems from becoming worse, without
the need for object recreation.

Online Redefinition

This feature uses temporary snapshots as a mechanism to
allow a table’s attributes to be changed whilst users are
running DML statements against it, with minimal
locking.

Unfortunately the indexes, triggers and constraints will
not have their original names after this process. In
Oracle 9iR2, the indexes and constraints can be renamed
afterwards.

De-Allocating Unused Space

In the unlikely circumstances that a segment may have
had too many extents explicitly allocated, or a non-zero
value for PCTINCREASE that resulted in the last extent
being too large, then the ALTER TABLE table-
name DEALLOCATE UNUSED command can be used
to correct this.

LMTs should be used whenever possible, and extent
sizes strictly controlled, so this command should be
almost redundant. It is mentioned for completeness.

Feature History

The features mentioned in this paper were introduced
with different versions of Oracle.

Oracle 7.3
• Unlimited extents

NZOUG 2003 Paper 48 Page 8

Oracle 8
• Partitioning

Oracle 8i
• Locally Managed Tablespaces (LMT)

• Index Compression

• Online Index Rebuilding

• Index Coalescing

Oracle 9i
• Automatic Segment Management (ASM)

• Online Index Coalescing

• Online table rebuilding

Oracle 9iR2
• System TS locally managed

• Data Compression

References

• http://www.ixora.com.au

• http://www.oracle-base.com

• http://metalink.oracle.com

• http://asktom.oracle.com

• http://otn.oracle.com

• Myths About Extents
Cary Millsap/Hotsos LLC

